3D Printing Links
J. Carlton Collins, CPA

3D Printing a Wrench - https://youtu.be/jQ-aWFYT_SU?t=112

Amazing Items made with 3D Printers - https://www.youtube.com/watch?v=dcX41EQ1JTo

3D Printing 10 Houses in 24 days - https://youtu.be/WzmCnzA7hnE

Faster 3D Printing using fluid self-curing materials - https://www.youtube.com/watch?v=ihR9SX7dgRo 3D printing is actually 2D printing, over and over (or is it?)

3D Printing an Ear - https://youtu.be/G0EJmBoLq-g?t=48 (:47 to 1:47)

Ten different types of 3D Printers - https://youtu.be/hNyFL4a4DKM?t=10

Printing a Pizza - https://www.youtube.com/watch?v=MGxr3boyIus

Mini-Me 3D Statue at Walmart (the Duplicator from DOO3D) - https://www.youtube.com/watch?v=Wnjm6LcMcQA

Staples to bring 3D printing to the masses - http://blogs.marketwatch.com/behindthestorefront/2014/04/11/staples-aims-to-bring-3-d-printing-to-the-masses/

History:

1981 - Hideo Kodama of Nagoya Municipal Industrial Research Institute invented three-dimensional fabricating methods using plastic model with photo-hardening polymer, where the UV exposure area is controlled by a masking pattern.

1984 - Chuck Hull of 3D Systems Corporation, developed a prototype system based on this process known as stereolithography, in which layers are added by curing photopolymers with ultraviolet light lasers one layer at a time. His biggest contribution was contribution is the design of STL (STereoLithography) file format which is widely accepted by many of today's 3D printers.

1990's - New material techniques were developed at Stanford and Carnegie Mellon University, including microcasting and sprayed materials. Sacrificial and support materials had also become more common, enabling new object geometries.

 2000's - Additive processes became more common, and material removal disappeared from the 3D printing process. During this decade, 3D printing was based primarily on polymer technologies.

 2010's - 3D printing evolved to inlcude sequential-layer material addition/joining throughout a 3D work envelope under automated control, and metals widely began to be used to produce finished products.

 Bioprinting - 3D bioprinting emerged as the process of generating 3D structures and geometries utilizing cells and an encapsulation material. The medical applications of 3D bioprinting are numerous, and are thus the subject of intensive research at academic institutions such as Cornell University and companies such as Organovo. One major application area of bioprinting is in the tissue engineering field of regenerative medicine.

 Nano Scale 3D Printing - 3D printing techniques can be employed to construct nanoscale-size objects. Such printed objects are typically grown on a solid substrate, e.g. silicon wafer, to which they adhere after printing as they're too small and fragile to be manipulated post-construction.

Impact on Business

Apparel - 3D printing has spread into the world of clothing with fashion designers experimenting with 3D-printed bikinis, shoes, and dresses. In commercial production Nike is using 3D printing to prototype and manufacture the 2012 Vapor Laser Talon football shoe for players of American football, and New Balance is 3D manufacturing custom-fit shoes for athletes.

3D printing has come to the point where companies are printing consumer grade eyewear with on demand custom fit and styling (although they cannot print the lenses). On demand customization of glasses is possible with rapid prototyping.

Automobiles - In early 2014, the Swedish supercar manufacturer, Koenigsegg, announced the One:1, a supercar that utilizes many components that were 3D printed. In the limited run of vehicles Koenigsegg produces, the One:1 has side-mirror internals, air ducts, titanium exhaust components, and even complete turbocharger assembles that have been 3D printed as part of the manufacturing process.

An American company, Local Motors is working with Oak Ridge National Laboratory and Cincinnati Incorporated to develop large-scale additive manufacturing processes suitable for printing an entire car body. The company revealed plans to print the vehicle live in front of an audience in September 2014 at the International Manufacturing Technology Show. "Produced from a new fiber-reinforced thermoplastic strong enough for use in an automotive application, the chassis and body without drivetrain, wheels and brakes weighs a scant 450 pounds and the completed car is comprised of just 40 components, a number that gets smaller with every revision."

Urbee is the name of the first car in the world car mounted using the technology 3D printing (his bodywork and his car windows were "printed"). Created in 2010 through the partnership between the US engineering group Kor Ecologic and the company Stratasys (manufacturer of printers Stratasys 3D), it is a hybrid vehicle with futuristic look.

Aircraft - In May 2015 Airbus announced that its new A350 XWB included over 1000 components manufactured by 3D printing.

Construction - Until recent years architects are often forced to show their clients drawings of their projects and build models by hands. Using 3D printing, architects can now produce scale models 50 to 80 percent faster, and up to 60 percent lighter. These improvements on accuracy, speed and quality have opened new doors for it to move beyond the use of 3-D printing in the modeling process and actually move it to manufacturing strategy. For example, Dr. Behrokh Khoshnevis’ research at the University of Southern California which resulted in a 3D printer that can build a house in 24 hours .The process is called Contour Crafting. Bushey also discussed Khoshnevis's robot which comes equipped with a nozzle that spews out concrete and can build a home based on a set computer pattern. Using this process, a single house or a colony of houses, each with possibly a different design, may be automatically constructed in a single run, embedded in each house all the conduits for electrical, plumbing and air-conditioning.

Electric motors and generators - Under a contract from the US Dept. of Energy’s Arpa-E (Advanced Research Project Agency-Energy) program, a team from the United Technologies Research Center as of 2014 was working toward producing a 30 kW induction motor using just additive manufacturing methods, trying to define an additively manufactured induction motor capable of delivering 50 kW peak and 30 kW continuous power over a speed range of zero to 12,000 rpm, using motor technology that does not involve rare-earth magnets.

Firearms: 3D Printed Firearms - In 2012, the US-based group Defense Distributed disclosed 3D printing plans for a working plastic gun that could be downloaded and reproduced by anybody with a 3D printer." Defense Distributed has also designed a 3D printable AR-15 type rifle lower receiver (capable of lasting more than 650 rounds) and a 30 round M16 magazine. The AR-15 has multiple receivers (both an upper and lower receiver), but the legally controlled part is the one that is serialized (the lower, in the AR-15's case). Soon after Defense Distributed succeeded in designing the first working blueprint to produce a plastic gun with a 3D printer in May 2013, the United States Department of State demanded that they remove the instructions from their website. After Defense Distributed released their plans, questions were raised regarding the effects that 3D printing and widespread consumer-level CNC machining may have on gun control effectiveness. In 2014, Japan’s Yoshitomo Imura posted videos and blueprints of the gun online and was sentenced to jail for two years. Police found at least two guns in his household that were capable of firing bullets.

   

Medical - 3D printing has been used to print patient specific implant and device for medical use. Successful operations include a titanium pelvis implanted into a British patient, titanium lower jaw transplanted to a Belgian patient, and a plastic tracheal splint for an American infant. The hearing aid and dental industries are expected to be the biggest area of future development using the custom 3D printing technology. In March 2014, surgeons in Swansea used 3D printed parts to rebuild the face of a motorcyclist who had been seriously injured in a road accident. Research is also being conducted on methods to bio-print replacements for lost tissue due to arthritis and cancer.

 

Medical Devices - In October 24, 2014, a five-year-old girl born without fully formed fingers on her left hand became the first child in the UK to have a prosthetic hand made with 3D printing technology. Her hand was designed by US-based E-nable, an open source design organization which uses a network of volunteers to design and make prosthetics mainly for children. The prosthetic hand was based on a plaster cast made by her parents. A boy named Alex was also born with a missing arm from just above the elbow. The team was able to use 3D printing to upload an e-NABLE Myoelectric arm that runs off of servos and batteries that are actuated by the electromyography muscle. With the use of 3D printers, E-NABLE has so far distributed more than 400 plastic hands to children.

Printed prosthetics have been used in rehabilitation of crippled animals. In 2013, a 3D printed foot let a crippled duckling walk again. In 2014 a chihuahua born without front legs was fitted with a harness and wheels created with a 3D printer. 3D printed hermit crab shells let hermit crabs inhabit a new style home. A prosthetic beak was another tool developed by the use of 3D printing to help aid a bald eagle named Beauty, whose beak was severely mutilated from a shot in the face. Since 2014, commercially available titanium knee implants made with 3D printer for dogs have been used to restore the animal mobility. Over 10,000 dogs in Europe and U.S. have been treated after only one year.

   

In February 2015, FDA approved the marketing of a surgical bolt which facilitates less-invasive foot surgery and eliminates the need to drill through bone. The 3-D printed titanium device, 'FastForward Bone Tether Plate' is approved to use in correction surgery to treat bunion.

Bio-printing - As of 2012, 3D bio-printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.

In 2013, Chinese scientists began printing ears, livers and kidneys, with living tissue. Researchers in China have been able to successfully print human organs using specialized 3D bio printers that use living cells instead of plastic. Researchers at Hangzhou Dianzi University designed the "3D bio printer" dubbed the "Regenovo". Xu Mingen, Regenovo's developer, said that it takes the printer under an hour to produce either a mini liver sample or a four to five inch ear cartilage sample. Xu also predicted that fully functional printed organs may be possible within the next ten to twenty years. In the same year, researchers at the University of Hasselt, in Belgium had successfully printed a new jawbone for an 83-year-old Belgian woman.

   

In January 2015, it was reported that doctors at London’s St Thomas' Hospital had used images obtained from a Magnetic Resonance Imaging (MRI) scan to create a 3D printing replica of the heart of a two-year-old girl with a ‘very complex’ hole in it. They were then able to tailor a Gore-Tex patch to effect a cure. The lead surgeon of the operating team, Professor David Anderson, told The Sunday Times: “The 3D printing meant we could create a model of her heart and then see the inside of it with a replica of the hole as it looked when the heart was pumping. We could go into the operation with a much better idea of what we would find”. The 3D printing technique used by the hospital was pioneered by Dr Gerald Greil.

Computers and Robots - 3D printing can be used to make laptops and other computers, including cases, as Novena and VIA OpenBook standard laptop cases. I.e. a Novena motherboard can be bought and be used in a printed VIA OpenBook case.

Open-source robots are built using 3D printers. Double Robotics grant access to their technology (an open SDK). On the other hand, 3&DBot is an Arduino 3D printed-robot with wheels and ODOI is a 3D printed humanoid robot. 

 

Space - In September 2014, SpaceX delivered the first zero-gravity 3-D printer to the International Space Station (ISS). On December 19, 2014, NASA emailed CAD drawings for a socket wrench to astronauts aboard the ISS, who then printed the tool using its 3-D printer. Applications for space offer the ability to print broken parts or tools on-site, as opposed to using rockets to bring along pre-manufactured items for space missions to human colonies on the moon, Mars, or elsewhere. The European Space Agency plans to deliver its new Portable On-Board 3D Printer (POP3D for short) to the International Space Station by June 2015, making it the second 3D printer in space.

Art (3D Printed Ceramic Pot) - In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology. By 2007 the mass media followed with an article in the Wall Street Journal and Time Magazine, listing a 3D printed design among their 100 most influential designs of the year. During the 2011 London Design Festival, an installation, curated by Murray Moss and focused on 3D Printing, was held in the Victoria and Albert Museum (the V&A).  

     

Some of the recent developments in 3D printing were revealed at the 3DPrintshow in London, which took place in November 2013 and 2014. The art section had in exposition artworks made with 3D printed plastic and metal. Several artists such as Joshua Harker, Davide Prete, Sophie Kahn, Helena Lukasova, Foteini Setaki showed how 3D printing can modify aesthetic and art processes. One part of the show focused on ways in which 3D printing can advance the medical field. The underlying theme of these advances was that these printers can be used to create parts that are printed with specifications to meet each individual. This makes the process safer and more efficient. One of these advances is the use of 3D printers to produce casts that are created to mimic the bones that they are supporting. These custom-fitted casts are open, which allow the wearer to scratch any itches and also wash the damaged area. Being open also allows for open ventilation. One of the best features is that they can be recycled to create more casts.

3D Printed Chocolate - 3D printing is becoming more popular in the customizable gifts industry, with products such as personalized mobile phone cases and dolls, as well as 3D printed chocolate. 

   

The use of 3D scanning technologies allows the replication of real objects without the use of moulding techniques that in many cases can be more expensive, more difficult, or too invasive to be performed, particularly for precious or delicate cultural heritage artefacts[160] where direct contact with the moulding substances could harm the original object's surface.

Communication - Employing additive layer technology offered by 3D printing, Terahertz devices which act as waveguides, couplers and bends have been created. The complex shape of these devices could not be achieved using conventional fabrication techniques. Commercially available professional grade printer EDEN 260V was used to create structures with minimum feature size of 100 µm. The printed structures were later DC sputter coated with gold (or any other metal) to create a Terahertz Plasmonic Device.[165]

Domestic Use (Using a MakerBot Replicator 2) - As of 2012, domestic 3D printing was mainly practiced by hobbyists and enthusiasts, and was little used for practical household applications. A working clock was made and gears were printed for home woodworking machines among other purposes. 3D printing was also used for ornamental objects. Web sites associated with home 3D printing tended to include backscratchers, coat hooks, doorknobs etc.

   

The open source Fab@Home project has developed printers for general use. They have been used in research environments to produce chemical compounds with 3D printing technology, including new ones, initially without immediate application as proof of principle. The printer can print with anything that can be dispensed from a syringe as liquid or paste. The developers of the chemical application envisage both industrial and domestic use for this technology, including enabling users in remote locations to be able to produce their own medicine or household chemicals.

3D printing is now working its way into households and more and more children are being introduced to the concept of 3D printing at earlier ages. The prospects of 3D printing are growing and as more people have access to this new innovation, new uses in households will emerge.

3D Printed Camera - The OpenReflex SLR film camera was developed for 3D printing as an open-source student project.

 

Education and Research - 3D printing, and open source RepRap 3D printers in particular, are the latest technology making inroads into the classroom. 3D printing allows students to create prototypes of items without the use of expensive tooling required in subtractive methods. Students design and produce actual models they can hold. The classroom environment allows students to learn and employ new applications for 3D printing. RepRaps, for example, have already been used for an educational mobile robotics platform. 

 

Some authors have claimed that RepRap 3D printers offer an unprecedented "revolution" in STEM education. The evidence for such claims comes from both the low cost ability for rapid prototyping in the classroom by students, but also the fabrication of low-cost high-quality scientific equipment from open hardware designs forming open-source labs. Engineering and design principles are explored as well as architectural planning. Students recreate duplicates of museum items such as fossils and historical artifacts for study in the classroom without possibly damaging sensitive collections. Other students interested in graphic designing can construct models with complex working parts. 3D printing gives students a new perspective with topographic maps. Science students can study cross-sections of internal organs of the human body and other biological specimens. And chemistry students can explore 3D models of molecules and the relationship within chemical compounds.

Environmental Use - In Bahrain, large-scale 3D printing using a sandstone-like material has been used to create unique coral-shaped structures, which encourage coral polyps to colonize and regenerate damaged reefs. These structures have a much more natural shape than other structures used to create artificial reefs, and, unlike concrete, are neither acid nor alkaline with neutral pH.